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Abstract: 

The steady MHD flow in a porous medium of an incompressible viscous fluid above an infinite rotating porous 

disk is studied with the influence of Hall current and heat transfer. Numerical solutions of the nonlinear 

governing equations which govern the hydrodynamics and energy transfer are obtained. The effects of the MHD 

and Hall current on velocity and temperature distributions have been considered. 
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Introduction:  

The study of magneto hydrodynamic flows with Hall currents has important engineering applications in 

problems of magneto hydrodynamic generators and of Hall accelerators as well as in flight magneto 

hydrodynamics. In an ionized gas where the density is low and/or the magnetic field is very strong, the 

conductivity normal to the magnetic field is reduced due to the free spiraling of electrons and ions about the 

magnetic lines of force before suffering collisions; also, a current is induced in a direction normal to both the 

electric and magnetic fields. The phenomenon is called the Hall Effect. 

 

Sherman and Sutton [1], Raptis and Ram [2], Sato [5], Pop [7], Hossain [8], Hossain and Mohammad [9], 

Hossain and Rashid [10], and Ram [11] studied the Hall effects. The influence of an external uniform magnetic 

field on the flow due to a rotating disk was studied [3, 4 and 12]. The effect of uniform suction or injection 

through a rotating porous disk on the steady hydrodynamic flow was investigated [1, 5 and 8]. 

 

 In the present work, the steady MHD flow of a viscous incompressible fluid due to the uniform rotation of a 

disk of infinite extent in a porous medium is studied with heattransfer and Hall effects. The flow in the porous 

media deals with the analysis in which the differential equation governing the fluid motion is based on the 

Darcy’s law which accounts for the drag exerted by the porous medium. The temperature of the disk is 

maintained at a constant value. The governing nonlinear differential equations are integrated numerically using 

the finite difference approximations. The effects of the MHD and Hall current of the medium on the steady flow 

and heat transfer have been computed and discussed. 

 

Basic equations: 

Let the disk lie in the plane 0z   and the space z > 0 is equipped by a viscous incompressible fluid. The motion 

is due to the rotation of an insulated disk of infinite extent about an axis perpendicular to its plane with constant 

angular speed   through a porous medium where the Darcy model is assumed. Otherwise the fluid is at rest 

under pressure p . The equations of steady motion are given by 
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where wvu ,,  are velocity components in the directions of increasing zr ,, respectively, 

p  is denoting the pressure, μ is the coefficient of viscosity,   is the density of the fluid, K is the Darcy 

permeability,   electrical conductivity, 0B  is the applied magnetic field. The von Karman transformations [1], 

 , -     ,    ,    ,    , PppzHwGrvFru 



    

where   is a non-dimensional distance measured along the axis of rotation, HGF ,, and P  are non-dimensional 

functions of   and   is the kinematic viscosity of the fluid,  = μ/  . With these definitions, equations (1)–(4) 

take the form 
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 KM /  is the porosity parameter and  /
2

0BN   is the magnetic parameter. eet   is Hall parameter. 

Where e  is the electron frequency. The boundary conditions for the velocity problem are given by 

 ,0      ,1      ,0      ,0  HGF       (9a) 

 ,0                    ,0     ,0   ,  PGF     (9b) 

Equation (9a) indicates the no-slip condition of viscous flow applied at the surface of the disk. Far from the 

surface of the disk, all fluid velocities must vanish aside the induced axial component as indicated in equation 

(9b). The above system of equations (5)–(7) with the prescribed boundary conditions given by equations (9) are 

sufficient to solve for the three components of the flow velocity. Equation (8) can be used to solve for the 

pressure distribution if required. 
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Due to the difference in temperature between the wall and the ambient fluid, heat Transfer takes place. The 

energy equation without the dissipation terms takes the form; 
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Where T the temperature of the fluid is, pc  is the specific heat at constant pressure of the fluid, and k  is the 

thermal conductivity of the fluid. The boundary conditions for the energy problem are that, by continuity 

considerations, the temperature equals wT  at the surface of the disk. At large distances from the disk, T  tends to 

T  where T  is the temperature of the ambient fluid. In terms of the non-dimensional variable 

)/()(   TTTT w  and using von Karman transformations, equation (10) takes the form; 

 ,0
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Where Pr  is the Prandtl number, kc p /Pr  . The boundary conditions in terms of    

are expressed as 

 ,0)(          ,1)0(          (12) 

 

Results and discussion: 

The system of non-linear ordinary differential equations (5)–(7) and (11) is solved under the conditions given by 

equations (9) and (12) for the three components of the flow velocity and temperature distribution, using RK4 

method with shooting technique. The resulting system of difference equations has to be solved in the infinite 

domain 0 <  < . A finite domain in the  -direction can be used instead with   chosen large enough to 

ensure that the solutions are not affected by imposing the asymptotic conditions at a finite distance. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Effect of M  on the profile of F .               Fig. 2. Effect of M  on the profile of G . 

  

 

 

 

 

 

 

 

 

 

Fig. 3. Effect of M  on the profile of H .               Fig. 4. Effect of Pr  on the profile of  . 
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Fig. 5. Effect of N  on the profile of F .                 Fig. 6. Effect of N  on the profile of H . 

 

  

   

 

 

 

 

 

 

 

 

Fig. 7. Effect of   on the profile of F .                 Fig. 8. Effect of   on the profile of H . 

 

 

 

 

 

 

 

 

 

 

 

Figures 1, 2, 3 present the steady state velocity components F, G and H, respectively, for various values of 

porosity parameter M  ( 2 1, ,5.0M ). In these figures, 1.0 ,71.0Pr  N  and 2.0 . It is clear from Figures 

1, 2, 3 that increasing M  decreases GF  ,  and H   for all ζ. Figure 4 indicate that, for 1.0 ,5.0  NM  

and 2.0 , increasing the Prandtl number ( 7 3, ,71.0Pr  ) decreases temperature  . Figures 5 and 6 show also 

the damping effect of the magnetic field which result in a reduction in the velocity components F  and H  for all 

ζ. Figures 7 and 8 present the steady state radial and axial velocity profiles F  and H  for various values of Hall 

parameter ( 1 0.5, ,2.0 ) and for 0.1N ,71.0Pr   and 5.0M . Figures 7 and 8 show that, increasing   

decreases F  and H  for all ζ.  
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